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Support vector based battery state of charge estimator
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Abstract

This paper investigates the use of a support vector machine (SVM) to estimate the state-of-charge (SOC) of a large-scale lithium-ion-
polymer (LiP) battery pack. The SOC of a battery cannot be measured directly and must be estimated from measurable battery parameters
such as current and voltage. The coulomb counting SOC estimator has been used in many applications but it has many drawbacks [S.
Piller, M. Perrin, Methods for state-of-charge determination and their application, J. Power Sources 96 (2001) 113–120]. The proposed SVM
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ased solution not only removes the drawbacks of the coulomb counting SOC estimator but also produces accurate SOC estim
ndustry standard US06 [V.H. Johnson, A.A. Pesaran, T. Sack, Temperature-dependent battery models for high-power lithium-io
n: Presented at the 17th Annual Electric Vehicle Symposium Montreal, Canada, October 15–18, 2000. The paper is downloadabl
ttp://www.nrel.gov/docs/fy01osti/28716.pdf] aggressive driving cycle test procedures. The proposed SOC estimator extracts suppor

rom a battery operation history then uses only these support vectors to estimate SOC, resulting in minimal computation load and
eal-time embedded system applications.

2004 Elsevier B.V. All rights reserved.
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. Introduction

As electric vehicles (EVs) gain popularity, the importance
f correct estimation of the current state of charge (SOC)
f a battery increases. The owner of a gasoline-powered
ar needs to know how much gasoline is in the tank. In
he same way, the owner of an EV needs to know how
uch energy is in the battery at any time. Unfortunately,
OC cannot be measured directly but must be estimated
ased on measurable battery parameters such as current and
oltage.

Many battery management systems (BMSs) estimate SOC
ith some variation of the basic coulomb counting method

1]. In coulomb counting, the current entering and leaving
he battery is measured periodically, then SOC of the bat-
ery is updated by adding or subtracting the last period’s
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net cumulative charge. Support vector machines (SVMs[3]
have been successfully applied for classification and re
sion especially in highly nonlinear systems. In the work
sented here, we build a support vector machine (SVM) us
lithium-ion-polymer (LiP) battery pack testing data cover
the expected range of operation. The SVM is then optim
by comparing its output with data obtained during a sim
SOC test of a LiP battery pack. Finally, the SVM is tes
with US06[2] dynamic operational data from U.S. Depa
ment of Energy’s Hybrid Electrical Vehicle program. In
dynamic tests, the SVM estimates battery SOC with a
mean-squared error of 5%, 5.76% and 2.54% for three c
respectively.

There has been much research into the applicatio
SVMs, as well as into new methods in estimating
tery SOC. However, there has been little work in ap
ing SVMs to estimate battery SOC. This paper pres
a new SOC method based on support vector regre
approach.
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2. Existing and proposed methods for estimating
SOC

A review of existing methods for estimation of battery
SOC is presented in the following. The advantages and disad-
vantages of the traditional coulomb counting method and ad-
vanced extended Kalman filtering (EKF) estimator[4,5] are
discussed. The proposed support vector based battery SOC
estimator is presented in detail.

2.1. Coulomb counting approach

The most straightforward method to estimate battery SOC
is the coulomb counting method. We use the following exam-
ple to explain the method and discuss the inherent drawbacks
in using the simple coulomb counting approach for real-time
applications.

If a battery’s capacity is 6.4 ampere-hours (Ah) and it starts
at 50% SOC, the battery is said to contain 3.2 Ah of charge.
If it is then discharged at 36 A for 10 s, its new capacity is
calculated as follows:

• 3.2 Ah− (36 A× 10 s/3600 s h−1) = 3.2− 0.1 = 3.1 Ah.
• 3.1 Ah is 48.4% of the battery’s original capacity of 6.4 Ah.
• The new SOC = 48.4%.
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authors discuss the application of KF modeling to an SOC
system. Their report correctly points out that the KF system
can overcome an incorrect initial SOC value. They also rec-
ognize that the KF model could detect and model cell aging.
A more recent paper on the use of extended Kalman filter
(EKF) to estimate SOC was presented by Barbarisi et al. at
an IFAC symposium in April 2004[7]. It is based on Nickel
Metal Hydride (NiMH) battery technology and uses mod-
eling data specific to that technology. Neural networks and
fuzzy logic techniques are also used by several authors to
build SOC estimators[8].

Plett [4,5] has proposed an EKF system for estimating
SOC. The system consists of an inner filter that adjusts the
SOC estimate and an outer filter that adjusts the underlying
battery model. The inner filter takes the measured current
and proposes a corresponding voltage based on SOC and the
system model. The proposed voltage is compared with the
measured voltage and the SOC is adjusted. Thus, the system
feedback is voltage and its output is SOC. The outer filter
monitors system current and voltage trends over long time
periods. It slowly adjusts the parameters of the underlying
system model so that aging and other lifetime effects are
detected and incorporated into the model in real time.

The final result of the EKF approach is a highly accurate
SOC estimator that maintains better than±5% accuracy over
a ains
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If a sufficiently accurate current sensor is used, a cou
ounter is reasonably accurate and inexpensive to imple
owever, it suffers the following drawbacks.

1) The coulomb counter is an open loop SOC estim
Errors in the current detector are accumulated by
estimator. The longer the estimator is operated, the l
the cumulative error becomes. Also, the worse the
in the current detector, the faster the estimator prod
an incorrect result.

2) The coulomb counter does not take into account cha
in the battery’s capacity as the battery ages. Charac
tics of aging can be estimated ahead of time and sav
the software. But the coulomb counter cannot detec
account for these factors in real time. In consequen
the battery’s aging does not follow the expected cou
SOC estimation becomes more incorrect as the ba
becomes older.

3) The coulomb counter must estimate the starting SO
measuring battery pack voltage.

For many SOC levels, this estimation carries an ave
15% error. Temperature, charging history and relaxa

ime can be saved and used to refine the starting SOC est
ut with a coulomb counter, whatever error is containe

he starting estimate will be carried forward. The coulo
ounter cannot detect and fix the starting error.

.2. Kalman filtering approach

An early paper on the use of a Kalman filter (KF) to
imate SOC was published in 2001 by Pang et al.[6]. The
.

ll ranges of operation. The EKF SOC estimator maint
his level of accuracy whether the system is changing sl
r is operating in an extremely dynamic range. It compen

or inaccuracies in system detectors. If the starting SO
ncorrect, it will detect that and correct it in a short period
ime. As the battery ages, the system detects capacity ch
nd compensates for them. Even changes in individual
an be sensed and incorporated into the system mode
rawback of the EKF SOC estimator is its high computati
omplexity and implementation cost. A full implementat
equires a 32-bit processor operating at 40 MHz with an
hip hardware floating-point coprocessor.

.3. The SVM niche

The SVMs[3] have been applied for classification in v
ous domains of pattern recognition. However, it can
e applied to regression problems, although regression
erently more difficult than classification. The SVM u
s a nonlinear estimator is more robust than a least-sq
stimator because it is insensitive to small changes. Tε-

nsensitivity loss function as shown in Eq.(1) proposed b
apnik [3] is used in support vector regression

∈ (y, f (x)) =
{

|y − f (x)| − ε for |y − f (x)| ≥ ε

0 otherwise
(1)

hereε is a prescribed parameter,y is the desired respons
(x) is the estimated output, andx is an input vector. The fun
ion L∈(y, f(x)) is called theε-insensitive loss function. Th
oss is equal to zero if the difference between the estim
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f(x) and the desired responsey is less thanε. The support
vector (SV) regression model is to approximate the function
f(x) as the following equation whereK is the kernel function

f (x) =
N∑

i=1

(αi − α∗
i )K(xi, x) (2)

The values ofαi andα∗
i are selected during the training pro-

cess to minimize the loss function under the constraints:

N∑
i=1

(αi − α∗
i ) = 0, 0 ≤ αi ≤ C, 0 ≤ α∗

i ≤ C (3)

Both C andε parameters must be tuned simultaneously to
have the best solution.

After training the SVM, we have values ofαi andα∗
i , which

are both zero ifxi does not contribute to the loss function.
Only support vectors have nonzero eitherαi or α∗

i . For a new
input vectorz, f(z) is predicted as

f (z) =
N∑

i=1

(αi − α∗
i )K(xi, z) (4)

A properly optimized SVM can condense thousands of train-
ing points to a manageable number of SVs. After learning the
SVs, an SVM usually does not require matrix inversions and
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line—which is not what we expect the SVM to do. Also,
the resulting SVM is not likely to perform well when
given real world data that are different from the training
data.

(2) Training data should cover the expected range of op-
eration of the final SVM. For this work, training data
should cover SOC from 20% to 80%, currents from +50
to −50 A and voltages in ranges that correspond to those
SOC and current values. Of course, real world battery
system values will sometimes exceed these limits. But
an SVM that predicts SOC within these limits would
certainly demonstrate that such an approach is feasible.

(3) Training data should be compatible to a real world SOC
estimator and represent a continuous flow of measured
battery data. Training data for the work presented in this
paper are taken from cell testing data for a large scale LiP
cell that is designed for use in vehicle propulsion systems.
Thus, the training data is very closely related to the real
data that the SVM SOC estimator will be working with.
The original cell testing data covers operation from 100%
SOC to 0% SOC and back up to 100% SOC. Current goes
from −80 to−1 A and then from +80 to +1 A. Training
data for this research are obtained by using all data points
that are less than 86% SOC and greater than 16% SOC.
Current goes from−75 to −10 A and then from +10
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alls to computationally intensive math functions, which
equired by the EKF approach.

In the field of SOC estimation, an SVM could be desig
o incorporate thousands of training data points and re
hem to a set of SVs that can be manipulated by an
ensive 8-bit processor. If the SVM is correctly optimiz

t might offer accuracy comparable to the EKF system
rice typical of a simple coulomb counter. The key to le
ging the power of SVs is to use the right training data
roper kernel functions[9,10]. The resultant SVM occupie
inimal memory and calculates an SOC in minimum ti
e use SVMlight[11] to determine the SVs with the sour

ode modified so that its input parameters can be auto
ally varied and the resulting SVM can be tested for accu

. Experimental procedures and results

Steps used in training an SVM for SOC estimation are
ented first followed by the testing procedures and res
raining steps include: choose and preprocess the tra
ata, find the optimal SVM parameters, and choose and
rocess the testing data.

.1. Choose and preprocess training data

Good training data should meet several criteria as foll

1) Training data should be different from the data that
be used for testing. If training data and testing data
identical, then the SVM is just interpolating points o
to +75 A. Several plateaus with 0 A current and ste
state SOC are also included.Figs. 1 and 2show the SOC
current and voltage ranges of the training data. Cur
voltage and ideal SOC data are obtained once a se
for a total of almost one hour of data points.

Data preprocessing turns out to be the key to getting
VM to converge. Without preprocessing, very few S

raining runs converge. SVM test runs are monitored w
imer that will stop SVM training processes after 30 min
rying to find a solution. With preprocessing, almost all S
uns converge within 1–2 min.

Preprocessing consists of scaling the data so that all
ector elements are in the range of 0.0–1.0. In addition
dditional element is added to the training vector. This
ent is the change in voltage in the last 1 s of operation.
lement is added because voltage data changes very r
uring pack operation. This can be observed inFig. 2. Each

raining datum thus consists of a four-element vector
aining current, voltage, SOC at the end of the last se
SOCt−1) and the change in voltage during the last sec
�V). This datum is then scaled to the range of 0.0–1.
epresentative training vector is shown inTable 1.

able 1
n example of training data vectors

lement Current Voltage SOCt−1 �V

nscaled −20.0102 152.909 40.87806 −0.12244
caled 0.374936 0.245451 0.408781 0.489797
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Fig. 1. SOC and current in training data.

3.2. Find the optimal SVM parameters

The SVM parameters are the constantC, the size of the
error tubeε and the type of kernel functionK. An increase
in C penalizes larger errors and leads to a decrease in the ap-
proximation error. The best kernel is found to be the second-
degree polynomial for our application. Using the second-
degree polynomial, the optimal value ofC is found to be

between 13.86 and 14.14. In the final optimal SVM a value
of 13.9 is used forC. At the same time, a value of 0.0001 is
used forε.

Within the polynomial kernel, two additional parameters
can be used to fine tune the SVM. The second-degree poly-
nomial kernel functionK(a, b) is evaluated as:

K(a,b) = s × (a · b)2 + r (5)

voltag
Fig. 2. SOC and
 e in training data.
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Fig. 3. SOC and current in the simple SOC test.

wherea and b are vectors,s is the linear factor andr is
a constant factor. The selection ofs and r is purely em-
pirical. In the final optimal SVM,s= 7.3 andr = 19.7 are
used.

3.3. Choose and preprocess testing data

The target application for this SOC estimator is an EV.
Unlike a hybrid electric vehicle (HEV), battery charge and

discharge transients in an EV tend to be relatively mild. Cur-
rents are still large but they do not change as rapidly as in an
HEV application. In order to obtain robust testing results, the
testing data chosen for this work are obtained from running
simple SOC tests as well as dynamic SOC tests typically used
in HEVs.

A graph of typical SOC and current values for the simple
SOC test is shown inFig. 3. Fig. 4 shows typical SOC and
voltage values of the simple SOC test. Preprocessing of test

ltage in
Fig. 4. SOC and vo
 the simple SOC test.
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Fig. 5. Predicted SOC by optimized SVM vs. actual SOC.

data is done in the same way as training data. Thus, each test
vector is a four-element vector.

3.4. Test results using the optimal SVM

3.4.1. Simple SOC test
The optimal SVM is used to predict SOC with simple SOC

test inputs and the results are shown inFig. 5.

The error between correct SOC and estimated SOC in the
above test is shown inFig. 6. The root-mean-squared error is
5% over the whole test. The maximum positive error is +16%
and the maximum negative error is−9%. There is no drift
over time in SOC estimation by the SVM while output drift is
a major problem to the coulomb counting method. The SVM
estimates SOC with the largest error when current is zero.
The system seems to seek out certain preferred SOC levels

optimiz
Fig. 6. Error between
 ed SVM and ideal SOC.
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Fig. 7. Optimized SVM predicts dynamic SOC.

when in steady state. This may be an imitation of the training
data, which has several well-defined plateaus where current
was zero.

3.4.2. Dynamic SOC test
The optimal SVM is also tested with US06[2], an aggres-

sive driving cycle provided by U.S. Department of Energy’s
Hybrid Electrical Vehicle program. US06 data are obtained

by driving an instrumented HEV on US highway 6 near Boul-
der, CO. The resulting current, voltage and SOC data are
available to companies doing battery research and develop-
ment.

US06 data are taken once a second and vary widely from
1 s to the next. Current can vary as much as 80 A in 1 s. On
an average current varies by 3.5 A s−1. In the simple SOC
test, current does not vary from 1 s to the next except at the

test w
Fig. 8. Second US06
 ith the optimized SVM.
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step change points where current jumps from one steady state
value to another. The US06 test is an especially demanding
test of the SVM SOC estimator because it is trained with
steady state data but is being asked to predict very dynamic
outputs. Final testing data are scaled using the same formulas
that are used on the training data. When the optimal SVM is
run with US06 test data as input, the results are surprisingly
good, as shown inFig. 7.

In this test run, the root-mean-squared error is 5.76% and
the maximum positive error is +12% and the maximum neg-
ative error is−2%. On the whole, this is impressive perfor-
mance for an SVM trained on slowly changing data and being
tested on very dynamic data.

Another US06 test is also used to test the optimized SVM.
This test is even more dynamic than the previous test. In this
test, SOC changes by 25% in just 7.5 min. For comparison,
the first US06 test changes SOC by 20% over 63 min. The
results of this test are shown inFig. 8. In this test, the root-
mean-squared error is just 2.5% with a maximum error of
+13%.

4. Microcontroller implementation

One of the objectives of this research is to implement the
o m-
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SOC estimator at the price of a coulomb counter. The SVM
tested above is optimized with less than 4000 iterations
through possible ranges of parameter values. An improved
SOC estimator by SVM can be found by doing more itera-
tion during training.

Temperature and charging history influence SOC, but the
history can be incorporated in the training data vector. In the
case of temperature, it can be included as an element of the
input vector. Charging history is important only when the
estimator is first starting up. A record of how long ago the
battery pack has been shut down and whether it was charging
or discharging helps estimate the starting SOC. The charg-
ing history can be embedded into the training data used by
the SVM SOC estimator during the training process. Using
the SVM approach, a low cost 8-bit microcontroller is suf-
ficient to estimate battery SOC with high accuracy in real
time.
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