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Abstract

This paper investigates the use of a support vector machine (SVM) to estimate the state-of-charge (SOC) of a large-scale lithium-ion-
polymer (LiP) battery pack. The SOC of a battery cannot be measured directly and must be estimated from measurable battery parameters
such as current and voltage. The coulomb counting SOC estimator has been used in many applications but it has many drawbacks [S.
Piller, M. Perrin, Methods for state-of-charge determination and their application, J. Power Sources 96 (2001) 113-120]. The proposed SVM
based solution not only removes the drawbacks of the coulomb counting SOC estimator but also produces accurate SOC estimates, using
industry standard USO06 [V.H. Johnson, A.A. Pesaran, T. Sack, Temperature-dependent battery models for high-power lithium-ion batteries,
in: Presented at the 17th Annual Electric Vehicle Symposium Montreal, Canada, October 15-18, 2000. The paper is downloadable at website
http://www.nrel.gov/docs/fy0losti/28716.pdiggressive driving cycle test procedures. The proposed SOC estimator extracts support vectors
from a battery operation history then uses only these support vectors to estimate SOC, resulting in minimal computation load and suitable for
real-time embedded system applications.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction net cumulative charge. Support vector machines (SVBIs)
have been successfully applied for classification and regres-
As electric vehicles (EVs) gain popularity, the importance sion especially in highly nonlinear systems. In the work pre-
of correct estimation of the current state of charge (SOC) sented here, we build a support vector machine (SVM) using a
of a battery increases. The owner of a gasoline-poweredlithium-ion-polymer (LiP) battery pack testing data covering
car needs to know how much gasoline is in the tank. In the expected range of operation. The SVM is then optimized
the same way, the owner of an EV needs to know how by comparing its output with data obtained during a simple
much energy is in the battery at any time. Unfortunately, SOC test of a LiP battery pack. Finally, the SVM is tested
SOC cannot be measured directly but must be estimatedwith US06[2] dynamic operational data from U.S. Depart-
based on measurable battery parameters such as current andent of Energy’s Hybrid Electrical Vehicle program. In the
voltage. dynamic tests, the SVM estimates battery SOC with a root-
Many battery management systems (BMSs) estimate SOCmean-squared error of 5%, 5.76% and 2.54% for three cases,
with some variation of the basic coulomb counting method respectively.
[1]. In coulomb counting, the current entering and leaving  There has been much research into the applications of
the battery is measured periodically, then SOC of the bat- SVMs, as well as into new methods in estimating bat-
tery is updated by adding or subtracting the last period’s tery SOC. However, there has been little work in apply-
ing SVMs to estimate battery SOC. This paper presents
« Corresponding author. Tel.: +1 719 2623495 fax: +1 719 2623580, & NEW SOC method based on support vector regression
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2. Existing and proposed methods for estimating authors discuss the application of KF modeling to an SOC
SOC system. Their report correctly points out that the KF system
can overcome an incorrect initial SOC value. They also rec-
A review of existing methods for estimation of battery ognize that the KF model could detect and model cell aging.
SOC s presented in the following. The advantages and disad-A more recent paper on the use of extended Kalman filter
vantages of the traditional coulomb counting method and ad- (EKF) to estimate SOC was presented by Barbarisi et al. at
vanced extended Kalman filtering (EKF) estimdb] are an IFAC symposium in April 20047]. It is based on Nickel
discussed. The proposed support vector based battery SO®/letal Hydride (NiMH) battery technology and uses mod-

estimator is presented in detail. eling data specific to that technology. Neural networks and
fuzzy logic techniques are also used by several authors to
2.1. Coulomb counting approach build SOC estimatorf3].

Plett [4,5] has proposed an EKF system for estimating

The most straightforward method to estimate battery SOC SOC. The system consists of an inner filter that adjusts the
is the coulomb counting method. We use the following exam- SOC estimate and an outer filter that adjusts the underlying
ple to explain the method and discuss the inherent drawbacksattery model. The inner filter takes the measured current
in using the simple coulomb counting approach for real-time and proposes a corresponding voltage based on SOC and the
applications. system model. The proposed voltage is compared with the

If a battery’s capacity is 6.4 ampere-hours (Ah) and it starts measured voltage and the SOC is adjusted. Thus, the system
at 50% SOC, the battery is said to contain 3.2 Ah of charge. feedback is voltage and its output is SOC. The outer filter
If it is then discharged at 36 A for 10s, its new capacity is monitors system current and voltage trends over long time
calculated as follows: periods. It slowly adjusts the parameters of the underlying

e 3.2Ah— (36 A x 105/3600shl)=3.2— 0.1=3.1 Ah. system model so that aging and other lifetime effects are

o 3.1Ahis 48.4% of the battery’s original capacity of 6.4 Ah. de?l’(]:;elfijnzrl]?elgﬁﬁ roﬂotrhaéegér;tz thforgg:?sl ': r:(iaarllltm;?:;:urate
e The new SOC =48.4%. pp ghly

SOC estimator that maintains better thia% accuracy over

If a sufficiently accurate current sensor is used, a coulomb all ranges of operation. The EKF SOC estimator maintains
counter is reasonably accurate and inexpensive to implementthis level of accuracy whether the system is changing slowly
However, it suffers the following drawbacks. oris operating in an extremely dynamic range. It compensates
for inaccuracies in system detectors. If the starting SOC is
incorrect, it will detect that and correct it in a short period of
time. As the battery ages, the system detects capacity changes
and compensates for them. Even changes in individual cells
. . can be sensed and incorporated into the system model. The
in the current detector, the faster the estimator prOducesdrawback of the EKF SOC estimator is its high computational

an incorrect result. X . . ? X
(2) The coulomb counter does not take into account Changescomplexny and implementation cost. A full implementation

in the battery’s capacity as the battery ages. Characteris- cauI"es a 32-bit processor operating at 40 MHz with an on-
. . 4 ? . chip hardware floating-point coprocessor.

tics of aging can be estimated ahead of time and saved in

the software. But the coulomb counter cannot detect and
account for these factors in real time. In consequence, if 2
the battery’s aging does not follow the expected course,
SOC estimation becomes more incorrect as the battery.

(1) The coulomb counter is an open loop SOC estimator.
Errors in the current detector are accumulated by the
estimator. The longer the estimator is operated, the larger
the cumulative error becomes. Also, the worse the error

.3. The SVM niche

The SVMs[3] have been applied for classification in var-

becomes older. ious domains of pattern recognition. However, it can also
(3) The coulomb counter must estimate the starting SOC by be applied to regression problems, although regression is in-
measuring battery pack voltage. herently more difficult than classification. The SVM used

as a nonlinear estimator is more robust than a least-squares
For many SOC levels, this estimation carries an averageestimator because it is insensitive to small changes.sThe
+15% error. Temperature, charging history and relaxation insensitivity loss function as shown in E¢L) proposed by
time can be saved and used to refine the starting SOC estimateyapnik[3] is used in support vector regression
But with a coulomb counter, whatever error is contained in
the starting estimate will be carried forward. The coulomb ly— f(X)|—e forly— f(xX)] >¢
counter cannot detect and fix the starting error. Le(y. f(x) = 0 otherwise 1)

2.2. Kalman filtering approach whereg is a prescribed parametgris the desired response,

f(x) is the estimated output, amds an input vector. The func-

An early paper on the use of a Kalman filter (KF) to es- tion Lc(y, f(X)) is called thes-insensitive loss function. The
timate SOC was published in 2001 by Pang ef@l. The loss is equal to zero if the difference between the estimated
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f(x) and the desired respongds less thare. The support
vector (SV) regression model is to approximate the function
f(x) as the following equation whek€is the kernel function

N
f0) =) (i — o)K (X, X)

i=1

)

The values ofrj ando are selected during the training pro-
cess to minimize the loss function under the constraints:

®3)

Both C and e parameters must be tuned simultaneously to
have the best solution.

Aftertraining the SVM, we have values@fanda}, which
are both zero if; does not contribute to the loss function.
Only support vectors have nonzero eitheor of. For a new
input vectorz, f(z) is predicted as

N
@)= (i — e)K(X:. 2)

i=1

“4)

A properly optimized SVM can condense thousands of train-
ing points to a manageable number of SVs. After learning the
SVs, an SVM usually does not require matrix inversions and
calls to computationally intensive math functions, which are
required by the EKF approach.

In the field of SOC estimation, an SVM could be designed
to incorporate thousands of training data points and reduce
them to a set of SVs that can be manipulated by an inex-
pensive 8-bit processor. If the SVM is correctly optimized,
it might offer accuracy comparable to the EKF system at a
price typical of a simple coulomb counter. The key to lever-
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line—which is not what we expect the SVM to do. Also,
the resulting SVM is not likely to perform well when
given real world data that are different from the training
data.

Training data should cover the expected range of op-
eration of the final SVM. For this work, training data
should cover SOC from 20% to 80%, currents from +50
to —50 A and voltages in ranges that correspond to those
SOC and current values. Of course, real world battery
system values will sometimes exceed these limits. But
an SVM that predicts SOC within these limits would
certainly demonstrate that such an approach is feasible.
Training data should be compatible to a real world SOC
estimator and represent a continuous flow of measured
battery data. Training data for the work presented in this
paper are taken from cell testing data for a large scale LiP
cellthatis designed for use in vehicle propulsion systems.
Thus, the training data is very closely related to the real
data that the SVM SOC estimator will be working with.
The original cell testing data covers operation from 100%
SOCt0 0% SOC and back up to 100% SOC. Current goes
from —80 to—1 A and then from +80 to +1 A. Training
data for this research are obtained by using all data points
that are less than 86% SOC and greater than 16% SOC.
Current goes from-75 to —10A and then from +10

to +75A. Several plateaus with 0 A current and steady
state SOC are also includddgs. 1 and Zhow the SOC,
current and voltage ranges of the training data. Current,
voltage and ideal SOC data are obtained once a second
for a total of almost one hour of data points.

)

3

Data preprocessing turns out to be the key to getting the
SVM to converge. Without preprocessing, very few SVM

aging the power of SVs is to use the right training data and training runs converge. SVM test runs are monitored with a

proper kernel functionf9,10]. The resultant SVM occupies

timer that will stop SVM training processes after 30 min of

minimal memory and calculates an SOC in minimum time. trying to find a solution. With preprocessing, almost all SVM

We use SVMIligh{11] to determine the SVs with the source
code modified so that its input parameters can be automati-
cally varied and the resulting SVM can be tested for accuracy.

3. Experimental procedures and results

Steps used in training an SVM for SOC estimation are pre-

runs converge within 1—-2 min.

Preprocessing consists of scaling the data so that all input
vector elements are in the range of 0.0-1.0. In addition, one
additional element is added to the training vector. This ele-
ment is the change in voltage in the last 1 s of operation. This
element is added because voltage data changes very rapidly
during pack operation. This can be observe#im 2 Each
training datum thus consists of a four-element vector con-

sented first followed by the testing procedures and results.taining current, voltage, SOC at the end of the last second
Training steps include: choose and preprocess the training(SOG-1) and the change in voltage during the last second

data, find the optimal SVM parameters, and choose and pre-(AV). This datum is then scaled to the range of 0.0-1.0. A
process the testing data. representative training vector is shownTiable 1

3.1. Choose and preprocess training data

Table 1
Good training data should meet several criteria as follows: An example of training data vectors
(1) Training data should be different from the data that will E'ement _ Current \oltage SQG av
be used for testing. If training data and testing data are Unscaled  —200102 152909 4087806 —0.12244
Scaled 0874936 0245451 0408781 0489797

identical, then the SVM is just interpolating points on a
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Fig. 1. SOC and current in training data.
3.2. Find the optimal SVM parameters between 13.86 and 14.14. In the final optimal SVM a value

of 13.9 is used foC. At the same time, a value of 0.0001 is
The SVM parameters are the const@ntthe size of the used fore.
error tubes and the type of kernel functio. An increase Within the polynomial kernel, two additional parameters
in C penalizes larger errors and leads to a decrease in the apean be used to fine tune the SVM. The second-degree poly-
proximation error. The best kernel is found to be the second- nomial kernel functiork(a, b) is evaluated as:
degree polynomial for our application. Using the second-
degree polynomial, the optimal value 6fis found to be  K(a,b) = s x (a-b)>+r (5)
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Fig. 2. SOC and voltage in training data.
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Fig. 3. SOC and current in the simple SOC test.
wherea and b are vectorss is the linear factor and is discharge transients in an EV tend to be relatively mild. Cur-

a constant factor. The selection sfandr is purely em- rents are still large but they do not change as rapidly as in an
pirical. In the final optimal SVMs=7.3 andr=19.7 are HEV application. In order to obtain robust testing results, the

used. testing data chosen for this work are obtained from running
simple SOC tests as well as dynamic SOC tests typically used
3.3. Choose and preprocess testing data in HEVs.

A graph of typical SOC and current values for the simple
The target application for this SOC estimator is an EV. SOC test is shown ifrig. 3. Fig. 4 shows typical SOC and
Unlike a hybrid electric vehicle (HEV), battery charge and voltage values of the simple SOC test. Preprocessing of test
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Fig. 4. SOC and voltage in the simple SOC test.
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Fig. 5. Predicted SOC by optimized SVM vs. actual SOC.

data is done in the same way as training data. Thus, each test The error between correct SOC and estimated SOC in the
above test is shown iRig. 6. The root-mean-squared error is

vector is a four-element vector.
5% over the whole test. The maximum positive error is +16%
3.4. Test results using the optimal SVM and the maximum negative error49%. There is no drift
over time in SOC estimation by the SVM while output driftis
3.4.1. Simple SOC test a major problem to the coulomb counting method. The SVM
estimates SOC with the largest error when current is zero.

The optimal SVM is used to predict SOC with simple SOC
test inputs and the results are showtrig. 5. The system seems to seek out certain preferred SOC levels

20

15
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Error (% SOC)
o

[~V

0
-5
-10 T T T T T T T T T
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time (s)

Fig. 6. Error between optimized SVM and ideal SOC.
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Fig. 7. Optimized SVM predicts dynamic SOC.

when in steady state. This may be an imitation of the training by driving an instrumented HEV on US highway 6 near Boul-

data, which has several well-defined plateaus where currentder, CO. The resulting current, voltage and SOC data are

was zero. available to companies doing battery research and develop-

ment.

3.4.2. Dynamic SOC test USO06 data are taken once a second and vary widely from
The optimal SVM is also tested with US(®|, an aggres- 1 to the next. Current can vary as much as 80A in 1s. On

sive driving cycle provided by U.S. Department of Energy’s an average current varies by 3.5A's In the simple SOC

Hybrid Electrical Vehicle program. US06 data are obtained test, current does not vary from 1s to the next except at the
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Fig. 8. Second US06 test with the optimized SVM.
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step change points where current jumps from one steady stat&SOC estimator at the price of a coulomb counter. The SVM
value to another. The USQ6 test is an especially demandingtested above is optimized with less than 4000 iterations
test of the SVM SOC estimator because it is trained with through possible ranges of parameter values. An improved
steady state data but is being asked to predict very dynamicSOC estimator by SVM can be found by doing more itera-
outputs. Final testing data are scaled using the same formulagion during training.
that are used on the training data. When the optimal SVMis  Temperature and charging history influence SOC, but the
run with US06 test data as input, the results are surprisingly history can be incorporated in the training data vector. In the
good, as shown ifig. 7. case of temperature, it can be included as an element of the
In this test run, the root-mean-squared error is 5.76% andinput vector. Charging history is important only when the
the maximum positive error is +12% and the maximum neg- estimator is first starting up. A record of how long ago the
ative error is—2%. On the whole, this is impressive perfor- battery pack has been shut down and whether it was charging
mance for an SVM trained on slowly changing data and being or discharging helps estimate the starting SOC. The charg-
tested on very dynamic data. ing history can be embedded into the training data used by
Another USO06 test is also used to test the optimized SVM. the SVM SOC estimator during the training process. Using
This test is even more dynamic than the previous test. In thisthe SVM approach, a low cost 8-bit microcontroller is suf-
test, SOC changes by 25% in just 7.5 min. For comparison, ficient to estimate battery SOC with high accuracy in real
the first US06 test changes SOC by 20% over 63 min. The time.
results of this test are shown kig. 8. In this test, the root-
mean-squared error is just 2.5% with a maximum error of
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